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Goal: Create synthesis plans that combine chemical and biocatalytic steps

Why chemo-enzymatic synthesis?
* Enzymes operate under relatively mild aqgueous, room-
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* Enables otherwise difficult/inaccessible synthesis routes

Industrial-scale, stereoselective, chemo-enzymatic case study:
Montelukast sodium, 20 tons per annum
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 Reaction: Ketone to chiral alcohol, introducing lone stereocenter in product Waste Generated lodegradable enzyme, borate salts,

. _ 5 cofactor other inorganics,
* Organic approach: Chiral reagent ((S)-DIP-Cl) at -25°C 3.6 eq pinene

* Improved biocatalytic approach: Selective ketoreductase (KRED, refined via
directed evolution) at 45°C

Approach: Identify chemical step(s) that can also be catalyzed by enzymes
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One step evaluation: Substrate scope is diverse within a given enzyme class

Core transformation: Example proposed reaction:

Tool can successfully recover enantioselective
Enzymatic: reduction of a ketone to a chiral alcohol by a

/'\ )_I\ oH Ketored“Ctafe ketoreductase (KRED) with a diverse scope of
R R5 MO ; % substrates. All example products have biocatalytic
routes available for them in extant literature.
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One step evaluation: different enzyme classes appropriately captured
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Application to multi-step planning of a complex anti-inflammatory drug
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Process Mass Intensity (PMI) for prioritization of biocatalytic replacements

In order to prioritize wasteful chemical reactions that should be =~ Example PMI analyses of biocatalysis candidates:
replaced with their biocatalytic equivalents, the Process Mass

Intensity (PMI) of each reaction is calculated as follows: NH>
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PM] = Z Mass Of materials Estimated PMI = 30.9

Mass of isolated product

Estimated PMI =57

(Mass of materials includes mass of process solvents, chemical reagents, isolated product,
and any single use process chemicals utilized in process execution)

Estimated PMI = 57.1 2
(https://www.acs.org/). Future versions of the tool will use an in- Q

PMI estimates are currently performed by the ACS PMI Predictor
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